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Abstract A method for determining the in-plane thermal diffusivity of planar
samples was constructed. The time-dependent temperature field of the sample heated
at one edge was measured with an infrared camera. The temperature fields were aver-
aged for different times over a narrow strip around the center line of the sample, and
the temperature profiles for varying time were fitted by a solution to a corresponding
one-dimensional heat equation. Heat losses by convective and radiative heat transfer
were both included in the model. Two fitting parameters, the thermal diffusivity and
the effective heat-loss term, were obtained from time-dependent temperature data by
optimization. The ratio of these two parameters was also extracted from the steady-
state temperature profile. The method was found to give good and consistent results
when tested on copper and aluminum samples.

Keywords IR camera · Solid material · Thermal conductivity · Thermal diffusivity ·
Thermal imaging

1 Introduction

In this article we describe a method for determining the in-plane thermal diffusivity
k/ρcp in planar geometry. The method is based on measuring the transient temper-
ature field in a sample using an infrared camera and fitting the data by a theoretical
solution, k/ρcp as one of two fitting parameters. With a known constant density ρ and
specific heat capacity cp, the thermal conductivity k of the sample can also then be
determined.
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There already exist many measurement methods for thermal diffusivity (see, e.g.,
[1]). The flash technique [2,3] is widely used, and it has also been applied to in-plane
measurements [4]. Heating of the sample can as well be arranged by a simple heating
element, while the temperature field is measured by an infrared camera [5]. Instead of
measuring the time evolution of temperature at two points [5], we extend this method
and use, e.g., the whole temperature profile in a planar sample. In addition, we increase
the accuracy of this method by also reducing the effect of heat losses on the measured
thermal diffusion coefficient. We model the convective and radiative heat transfer,
and determine the linearized heat-loss coefficient when determining the thermal dif-
fusion coefficient. To this end, a weak flow of air is also included around the sample
to stabilize the convective heat transfer.

A motivation for using a simple heating element is that by this method we can
easily produce a linear temperature front propagating in the sample. This measuring
geometry allows one-dimensional modeling (provided that the relevant Biot number
is much less than unity, see below), and different heat-loss mechanisms can more
easily be included in the model. When we furthermore calibrate the temperature of
each sample as determined by the infrared camera, the true emission coefficient of
the sample is automatically taken into account. With this kind of method, we can thus
achieve very good accuracy for the measured temperatures, as evidenced by the results
reported below. We can therefore extend the method of this work to the case where
thermal diffusivity and heat-loss coefficients depend on temperature, and determine
as well their temperature dependence.

2 Experimental Setup

The experimental setup is shown schematically in Fig. 1. A sample plate initially
at room temperature is pressed suddenly between two copper plates heated by elec-
tric resistors. These resistors are covered in Teflon casings so as to minimize heat
losses. The two heating resistors are connected in series, and the heating power can
be adjusted.

Under the sample there is a 100 mm diameter pipe and a fan which are used
to introduce a slow, laminar air flow over the plate in order to keep constant the
convective heat transfer from the sample. A part of the pipe is filled with porous
material to damp turbulence and to homogenize the air flow. The fan speed can be
controlled. The whole experimental setup is located in a room in which all disturbing
air flows have been eliminated.

The time-dependent temperature field in the sample is recorded with an infrared
camera, and a PC is connected to the camera for image grabbing and further data
analysis. There is a chamber around the system for shielding it from anomalous heat
radiation from the surroundings. A total of 25 images per second were recorded in
the measurements, and the spatial resolution of the measured temperature field was
typically about 0.3 mm.

The emittance of the samples was improved by painting them thinly on both sides
with black spray paint before measurements. The IR camera was then calibrated for
each sample by attaching a thermocouple on the sample surface and measuring the
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Fig. 1 Schematic diagram of the experimental setup. The upper part of the measuring chamber is not
shown. A is the sample, B is the heating unit, C is the IR camera, D is the fan, and E is the flow controller

temperature of that point with the IR camera. The procedure was repeated for several
different plate temperatures, and a calibration curve was eventually achieved. Cali-
bration data together with polynomial least-squares fits for copper and an aluminum
plate are shown in Fig. 2. A fifth-order polynomial fit was used for the copper sample
and a third-order fit for the aluminum. The small differences between the calibration
curves may be caused by slightly different emittances, and their temperature depen-
dences, of the two samples. The emittance values were not determined because the
calibration curves give accurately the needed temperature data from the IR-camera
images.

It is essential that the sample plate can be accurately cropped from the IR-camera
image. The temperature field was usually too blurry at the plate edges to distinguish
the sample clearly from the background, especially at the cooler edge of the plate.
Therefore, the position of each edge of the plate was first marked by holding an elec-
trically heated tungsten wire on the edge for a while. The hot wire stood out from the
background in the image, and the center line of the wire determined the position of
the edge in the recorded temperature field. This cropping procedure had to be carried
out every time a sample was installed in the holder for measurements.
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Fig. 2 Calibration curve of the IR camera for a 1.0 mm thick copper plate (squares and the solid line) and
for a 1.0 mm thick aluminum plate (diamonds and the dashed line). The “accurate” temperatures TTC were
measured by a thermocouple attached to the plate

3 Mathematical Model

Since a whole edge of the planar sample is heated and the boundary conditions are
similar at the two adjacent plate edges, the system is symmetric in the direction away
from the heater. Provided that the sample thickness is much less than the ratio of the
heat diffusion coefficient α to the effective heat-loss rate coefficient η (see below),
i.e., that the relevant Biot number is much less than unity, we can also assume that
the sample is isothermal in the thickness direction. Now we could solve the remaining
two-dimensional heat equation, but if we restrict our consideration to a narrow strip
at the center line of the plate, we can use a one-dimensional heat equation to describe
the system;

ρcp
∂T

∂t
= ∂

∂x

(
k
∂T

∂x

)
+ q̇. (1)

Here T = T (x, t) is the temperature of the plate with x the distance from the heated
edge of the plate, cp is the specific heat, ρ is the density, k is the thermal conductivity
(more precisely the x component of the thermal-conductivity tensor) of the material
of the plate, and q̇ is the rate at which energy is generated (lost or gained) per unit
volume of the medium. The energy generation term includes convective and radiative
heat transfer;

q̇ = −2h

a
(T − T∞) − 2εσ

a
(T 4 − T 4

sur). (2)

Here a is the thickness of the plate, h is the convection heat transfer coefficient, ε is
the emissivity, and σ is the Stefan–Boltzmann constant. T∞ is the air temperature, and
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Tsur the temperature of the walls of the measuring chamber. In our case, Tsur = T∞.
As temperature differences are quite small, we approximate the radiation term by a
first-order term in T − T∞, and find

∂�

∂t
= ∂

∂x

(
α

∂�

∂x

)
− 2η

a
�, (3)

where � := T − T∞, α := k/ρcp is the heat diffusion coefficient, and η :=
(h + 4εσ T 3∞)/ρcp is an effective heat-loss rate coefficient.

One edge of the plate is heated, and the time-dependence of its temperature �(0, t)
is measured. At the opposite edge we have convective and radiative heat transfer. So,
in Eq. 3, we impose the initial and boundary conditions:

⎧⎪⎨
⎪⎩

�(x, 0) = f (x),

�(0, t) = �0(t),

α
∂�(L , t)

∂x
+ η�(L , t) = 0,

(4)

where L is the length of the plate. The initial temperature distribution f (x) and the
temperature �0(t) are obtained from measurements.

If α and η are constants, the boundary value problem can be solved as described in
Appendix A. The unknown coefficients α and η can then be determined by minimizing
the integral,

x2∫
x1

⎛
⎝

t2∫
t1

(
�(α,η)(x, t) − �̄(x, t)

)2
dt

⎞
⎠dx (5)

with respect to α and η. Here �(α,η) is the solution of the boundary value problem,
Eq. 3 with Eq. 4, and �̄ is the observed temperature. By this choice of the integral
form, we take full advantage of the position and time information of the measured
temperature data.

For a stationary temperature distribution, we can reduce this two-dimensional opti-
mization problem into a one-dimensional problem in the following way. A stationary
temperature distribution satisfies the differential equation,

α
d2�

dx2 − 2η

a
� = 0 (6)

with the boundary conditions,

{
�(0) = �0

α
d�

dx
(L) + η�(L) = 0.

(7)
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The solution of this problem is

�(x) = �0

(
cosh β(L − x) + (η/βα) sinh β(L − x)

cosh βL + (η/βα) sinh βL

)
(8)

where β2 = 2η/aα. From the data we get �0 and the ratio η/α is determined by
minimizing the integral,

x2∫
x1

(
�(x) − ��(x)

)2
dx, (9)

where ��(x) is the measured stationary temperature profile. Since we now know the
ratio of the two fitting parameters of the time-dependent case, Eq. 5, it is better to use
η/α and α as the actual fitting parameters rather than η and α. The other reason for
this choice is that the eigenvalues βn in the solution of the time-dependent case (see
Eq. A9 in Appendix A) are functions of η/α, and it is possible to save computation
time by selecting this variable as a fitting parameter. The data are thus analyzed in
the following way. Optimization with respect to the η/α parameter is done for the
steady-state temperature profile (Eq. 9). Thereafter a two-dimensional optimization of
the time-dependent temperature profiles is performed (Eq. 5) such that minimization
is searched around the η/α value obtained for the steady-state profile.

4 Results

Homogeneous samples with known thermal-conductivity properties were used to val-
idate the method. The sample plates were approximately 50 mm by 100 mm in size
and 1.0 mm thick. There were two sample materials: high-purity copper and industrial
aluminum. For the copper sample the manufacturer provided the material specifica-
tions but for the other sample tabulated properties for pure aluminum were used. The
properties are shown for both materials in Table 1. For more thermal-conductivity data
as a function of temperature, see Refs. [7] and [8]. It was known that the aluminum
sample was not pure, but its properties were assumed not to differ too much from the
tabulated values of pure material. In the mathematical model above, it was assumed
that the thermal conductivity and the specific heat capacity do not depend on tempera-
ture. These assumptions are well satisfied for the two materials when the temperature
differences within the samples are relatively small.

Table 1 Density, specific heat capacity, thermal conductivity, and thermal diffusivity of the samples. Values
for copper were given by the manufacturer but the other values were taken from Ref. [6] for pure aluminum

Sample ρ (kg · m−3) cp (J · kg−1 · K−1) k (W · m−1 · K−1) α (10−3 m2 · s−1)

Cu 8,940 385 399 0.1159
Al 2,702 903 237 0.0971
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Fig. 3 Steady-state temperature field (averaged over 30 s) of a copper plate recorded by an IR camera. The
gray scale bar corresponds to temperature values in ◦C. The temperature values were corrected using the
calibration curve of Fig. 2. The horizontal lines show the averaging window for which a one-dimensional
temperature profile is calculated. The small vertical lines are the boundaries for fitting the temperature
profile by Eq. 8 (see Fig. 4)

A sample plate was initially at room temperature and was then suddenly pressed
between two heating plates. The time-dependent temperature field in the sample was
recorded from starting the heating for about two minutes, when the temperature profile
was already approaching the stationary one. The sample was left heated in the holder for
about an hour, after which the steady-state temperature profile was recorded. Figure 3
shows a steady-state temperature field in a 1 mm thick copper plate.

One-dimensional temperature profiles T (x, t) (see Figs. 4 and 5) were obtained
from the temperature fields by taking an average in the y direction over the central
fifth of the sample (see Fig. 3). The temperature seems to drop rapidly at the cooler
edge of the plate as the IR camera receives radiation there also from confining walls
at room temperature. When fitting experimental data by Eqs. 3 and 4, or by Eq. 8 in
the steady state, about 10 mm stretches at the edges in the x direction were left out of
the fit. The averaging window and the fitting boundaries are marked in Fig. 3. Noise
in the temperature profiles were reduced by taking a moving average over an about
2-mm wide window.

A typical time evolution of the average temperature profile in a copper plate is
shown in Fig. 5. The measured data were averaged over every five frames, i.e., over
0.2 s, to smooth the time evolution. The initial and boundary conditions, Eq. 4, for the
solution of the heat equation, Eq. 3, can be determined from the measured data. The
boundary condition �(0, t) was chosen as the temperature difference T (x) − T∞ at
about 10 mm away from the heating edge. The position of the selected boundary is at
x = 0 in Fig. 5, i.e., the x axis is shifted by 10 mm to the right compared to Fig. 4.
A fourth-order polynomial was fitted to the initial spatial temperature profile (the low-
est profile in Fig. 5) and to the time dependence of the boundary temperature. These fits
were used as �(x, 0) and �(0, t), respectively, when determining the corresponding
solution for the heat equation.
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Fig. 4 Steady-state temperature profile (dots) of a copper plate together with a theoretical fit (continuous
line). The fitting window is between the two vertical lines. The best fit was found for the fitting-parameter
value η/α = 0.0276 m−1. The air temperature was T∞ = 297.8 K in this measurement
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Fig. 5 Transient average temperature profile of a copper plate at 10 s intervals. A fourth-order polynomial
is fitted to the first (lowest) profile and is taken as the initial condition for the theoretical solution of the heat
equation. The (time-dependent) boundary condition is taken at x = 0, and the two vertical lines show the
integration region for optimization. The smooth lines for x > 0, t > 0 represent the theoretical solution
with optimized values for η/α and α

Solutions for the heat equation (Eq. 3) were determined for several values of the
fitting parameters η/α and α. In this way it was possible to scan the two-dimensional
(η, α) parameter space and check if the cost-function minimum is really reached with
the same η/α value that gave the best fit for the steady-state temperature profile.
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Fig. 6 Solution of the heat equation calculated by using the best-fit parameters for η/α and α. The bound-
ary and initial conditions for the solution were taken from the experimental data for a copper sample (see
Fig. 5)

A solution for the copper measurement of Fig. 5 is shown in Fig. 6. The tempera-
ture profiles were calculated for the same time values as the experimental data were
obtained. Parameter values that minimize the cost function (Eq. 5) are assumed to
give the best fit to the data. The solution is not continuous at x = 0 (see Appendix
A), but such boundary effects are left out of the spatial integration region in the cost
function (Eq. 5). The integration limits are shown in Fig. 5. The temporal integration
was carried out over all available times.

The cost function for a copper sample, normalized by the integration area, is shown
in Fig. 7 as a function of α for different η/α ratios. It turned out that in this case the
minimum was found for η/α = 0.0274 m−1 and α = 1.161 × 10−4 m2 · s−1. The
η/α value obtained differed from the steady-state value of 0.0276 m−1 by 0.7 %. The
bottom of the cost-function surface in the (η, α) space is quite flat, as can be seen
from the contours in Fig. 8, and finding the minimum accurately is sensitive to the
η/α value.

Figure 9 shows the difference between the measured average temperature in a cop-
per plate and the solution of the heat equation calculated by using the best-fit parameter
values η/α = 0.0274 m−1 and α = 1.161 × 10−4 m2 · s−1. The square of this differ-
ence is actually integrated when determining the value of the cost function. The square
root of the cost-function minimum gives a measure for the mean deviation between the
theoretical solution and experimental data. In the case of Fig. 9, the minimum of the
normalized cost function was Inorm = 0.00239 K2 (see Fig. 7), which means that
the mean deviation of the solution from the measurement data is 0.05 K. This is actu-
ally less than the temperature resolution of the IR camera (0.1 K). The narrow ridges
that can be seen in Fig. 9 are caused by Fourier components of the theoretical solution
that are summed in Eq. A21. The solution was calculated by using the first 1,000
terms in the summation. This phenomenon became visible because the temperature
accuracy was sufficiently high and the noise level sufficiently low. Taking more terms
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Fig. 7 The value of the cost function (Eq. 5) for a copper sample, divided by the integration area, for
several values of α and for different ratios η/α (shown in the inset). The minimum of the cost function
corresponds to the best theoretical solution for the experimental data. The minimum was now reached for
η/α = 0.0274 m−1 and α = 1.161 × 10−4 m2 · s−1
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Fig. 8 Normalized cost-function contours for a copper sample in the (α, η/α) space. The small circle
represents the location of the minimum. The values of the cost function on adjacent contour lines differ by
1 %

in the sum would make Fig. 9 smoother as the ridges would gradually die out, but
this would not increase the accuracy by which the thermal diffusion coefficient is
determined. To find out if there is a bias in the measured temperature profiles, we plot
in Fig. 10 these profiles for a copper sample at one-second time intervals. It is evident
from this figure that, if there is a bias, it is in any case smaller than the accuracy of the
temperature readings (0.1 K). The minor oscillations in the average profile arise from
the discreteness of the recorded signal (7 bits).
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Fig. 9 Difference between the measured temperature data for a copper sample and the theoretical solution
of the heat equation calculated by using the best-fit values for the parameters η/α and α
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Fig. 10 Cross sections of Fig. 9 at one-second time intervals. The amplitude of temperature variations is
similar to (or less than) the accuracy of the measured temperature data, 0.1 K

The procedure described above for determining the thermal diffusion coefficient
of a sample was repeated for several independent copper measurements, and also for
measurements on an aluminum plate. The results are shown in Table 2. The ther-
mal-conductivity values were determined using the constant density and specific heat
values of Table 1. The accuracy of the parameter η/α was 0.0001 m−1, and it was
1.5 × 10−7 m2 · s−1 for parameter α.

The error limits in the individual results of Table 2 are of the order of 0.5 %. This
estimate was obtained by changing the integration limits and the moment when the
initial temperature profile was taken from measurement data. These changes moved
the position of the cost-function minimum by about 0.5 % at the maximum. The mean
values of the results shown in Table 2 are (401 and 220) W · m−1·K−1 for copper
and aluminum, respectively. The corresponding values for the standard deviation of
the mean are (3 and 1) W · m−1 · K−1. Thus, the final results of our measurements are
(401 ± 3) W · m−1 · K−1 and (220 ± 1) W · m−1 · K−1.
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Table 2 Results for individual measurements and averages for copper and aluminum

Sample η/α (m−1) α (10−3 m2 · s−1) k (W ·m−1 · K−1) Inorm (K2)

Cu 0.0284 0.1169 402.5 0.00304
0.0306 0.1153 397 0.00415
0.0294 0.1145 394 0.00314
0.0274 0.1161 399.5 0.00239
0.0293 0.1140 392.5 0.00305
0.0295 0.1148 395 0.00317
0.0304 0.1193 410.5 0.00311
0.0311 0.1200 413 0.00288
0.0308 0.1187 408.5 0.00338
0.0296 0.1159 399 0.00361

Average 0.1165 401
Al 0.0488 0.08955 218.5 0.00235

0.0506 0.08873 216.5 0.00520
0.0500 0.09037 220.5 0.00350
0.0478 0.09037 220.5 0.00343
0.0486 0.09078 221.5 0.00272
0.0510 0.09140 223 0.00365
0.0514 0.09058 221 0.00205
0.0508 0.09037 220.5 0.00239
0.0509 0.09058 221 0.00186
0.0519 0.09140 223 0.00249
0.0505 0.08935 218 0.00291

Average 0.09032 220

5 Discussion

It was known from independent measurements that for the copper of which our sam-
ple was made, the thermal conductivity is k = 399 W · m−1 · K−1 with unspeci-
fied error bars. This result is based on an electrical-conductivity measurement that
is very accurate. Our result agrees well with this value. For high-purity aluminum
k = 237 W · m−1 · K−1 at 300 K with (2 to 3)% uncertainty [6,1]. Our result falls
below the lower limit which can be explained by impurities in the sample that lower
the thermal conductivity (see [9]).

The advantages of our method are the one-dimensional form of the heat equation,
which is easy to solve and handle experimentally, and that detailed knowledge of
the boundary conditions is not required. The contact resistance between the heating
elements and the sample has no influence on the final results.

We used here isotropic samples to validate our method, but it is also applicable
to determination of the thermal diffusion coefficient for samples that are not isotro-
pic in the x direction (see Fig. 3). The present version of the method requires that
the sample is homogeneous in the z direction and that the Biot number related to
the sample thickness is small, Biz = ha/kz � 1. This requirement gives a limit
for the sample thickness: a � kz/h. For good heat conductors, such as copper and
aluminum, k ∼ 100 W · m−1 · K−1. The convection term in the present setup was
h ∼ 10 W · m−2 · K−1 (see below), so that k/h ∼ 10 m. The samples were 10−3 m
thick, and the Biot number condition was well satisfied. The method would also work
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for poor heat conductors if the sample thickness were sufficiently low. For example,
for paper, k ∼ 0.1 W · m−1 · K−1 and thus k/h ∼ 10−2 m, and a typical paper thick-
ness is a ∼ 10−4 m. So the Biot number condition would be satisfied also for paper-like
materials, but the limiting factor here is that the area of the material where the tem-
perature rises clearly above room temperature would be small, and acquiring enough
data might be difficult.

It turned out that shielding of the measuring chamber around the sample is neces-
sary when good-quality temperature data are required. Without shielding reflections
of, e.g., hot equipment in the surroundings can be seen in the temperature field of the
sample, although it is painted black.

The measuring method is sensitive to convective heat transfer. Uncontrolled air
flows around the sample will affect the temperature profiles measured and,
consequently, the thermal-conductivity properties determined. We chose to make the
convection as constant as possible because in the case of no initial flow at all, free
convection would create an unstable heat-transfer field. Since we take the tempera-
ture profile as a mean over a narrow strip around the center line of the sample, it is
assumed that the convection coefficient h is independent of position. Edge effects in
the x direction are also eliminated by reducing the length of the fitting area.

From Table 2 we can also calculate an average value for the parameter η, which
consists of both convective and radiative parts as mentioned above. For the copper
sample, ηρcp = h + 4εσ T 3∞ = (11.9 ± 0.2)W · m−2 · K−1. The contribution of the
radiation is about 50 %, and it cannot be ignored. Furthermore, we can now estimate
how accurate is the linearized temperature dependence of the radiation term. For the
measurement shown in Figs. 4 and 5, the linearized form 4εσ T 3∞(T − T∞) gives an
about 7 % lower heat flux (on the average) than the fourth-power term εσ (T 4 − T 4∞)

of the Stefan–Boltzmann law. This means a 0.5 % error in the flux per 1 K temperature
difference between the plate and the surroundings. But for the fit parameter η, the
error is only about 0.25 % · K−1, and this effective temperature dependence is too low
to detect when fitting the measurement data.

One can get rid of convective heat transfer by placing the measurement system in
vacuum. In this way it would be possible to determine the temperature dependence
of the thermal conductivity more accurately (one unknown parameter less), provided
that the noise in the temperature data is at a low-enough level. It would also be easier
to model heat transfer by radiation through the true Stefan–Boltzmann law.
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Kimmo Ranttila for making Fig. 1, and to Hannu Rajainmäki for very useful discussions.

Appendix A

Consider the boundary value problem of Eqs. 3 and 4. The substitution of

u(x, t) = �(x, t)e
2η
a t (A1)
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leads to the heat equation,

∂u

∂t
= α

∂2u

∂x2 (A2)

with the initial and boundary values,

⎧⎪⎨
⎪⎩

u(x, 0) = f (x),

u(0, t) = θ0(t),

α
∂u(L , t)

∂x
+ ηu(L , t) = 0,

(A3)

where θ0(t) = �0(t)e
2η
a t . The solution of this problem can be written as a sum of the

solutions of Eq. A2 with the boundary conditions,

⎧⎪⎨
⎪⎩

u(x, 0) = f (x),

u(0, t) = 0,

α
∂u(L , t)

∂x
+ ηu(L , t) = 0

(A4)

and

⎧⎪⎨
⎪⎩

u(x, 0) = 0,

u(0, t) = θ0(t),

α
∂u(L , t)

∂x
+ ηu(L , t) = 0.

(A5)

Consider at first Eq. A2 with the homogeneous boundary conditions, Eq. A4. Separa-
tion of variables, u(x, t) = X (x)T (t), leads to the differential equations,

T ′(t)
T (t)

= α
X ′′(x)

X (x)
= −λ. (A6)

For function X we thus find the boundary value problem,

{
αX ′′ = −λX
X (0) = 0, X ′(L) + µX (L) = 0,

(A7)

where µ = η/α. This eigenvalue problem is easy to solve, and its eigenfunctions are

Xn(x) = sin βn x, n = 1, 2, . . . , (A8)

where 0 < β1 < β2 < . . . are the solutions of the equation

µ tan βL = −β, (A9)
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and the corresponding eigenvalues are λn = β2
n/α. By the Sturm–Liouville theorem

these eigenfunctions form an orthogonal basis in L2([0, L]). Using standard Fourier-
series methods we obtain a solution of the boundary value problem, Eqs. A2 and A4,
in the form,

u(x, t) =
∞∑

n=1

⎛
⎝e−αβ2

n t

γn

L∫
0

f (y) sin βn ydy

⎞
⎠ sin βn x, (A10)

where

γn =
L∫

0

sin2 βn ydy = 1

2

(
L + µ

β2
n + µ2

)
. (A11)

By the completeness of the eigenfunctions, we can expand the solution of the inho-
mogeneous problem, Eqs. A2 and A5, as a Fourier series;

u(x, t) =
∞∑

n=1

un(t) sin βn x (A12)

with the coefficients

un(t) = 1

γn

L∫
0

u(x, t) sin βn xdx . (A13)

The initial condition u(x, 0) = 0 requires that un(0) = 0. In the same way we can
expand the derivatives such that

∂u

∂t
(x, t) =

∞∑
n=1

vn(t) sin βn x

(A14)
∂2u

∂x2 (x, t) =
∞∑

n=1

wn(t) sin βn x .

with the coefficients

vn(t) = 1

γn

L∫
0

∂u

∂t
(x, t) sin βn xdx

(A15)

wn(t) = 1

γn

L∫
0

∂2u

∂x2 (x, t) sin βn xdx .
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We easily find that

vn(t) = dun

dt
(t) and vn(t) = αwn(t). (A16)

Integrating twice by parts gives

wn(t) = 1

γn

⎛
⎝∂u

∂x
(L , t) sin βn L − βnu(L , t) cos βn L

+βnu(0, t) − β2
n

L∫
0

u(x, t) sin βn xdx

⎞
⎠ . (A17)

Using the boundary conditions of Eqs. A5 and A9, we find that

wn(t) = βn

γn
θ0(t) − β2

n un(t). (A18)

We finally find the differential equation,

dun

dt
= −αβ2

n un + αβn

γn
θ0(t), un(0) = 0, (A19)

for the functions un . The solution of this equation is

un(t) = αβne−αβ2
n t

γn

t∫
0

eαβ2
n sθ0(s)ds. (A20)

The solution of our original boundary value problem, Eqs. 3 and 4, can thus be
expressed in the form

�(x, t) =
∞∑

n=1

e−(αβ2
n +2η/a)t

γn

⎛
⎝

L∫
0

f (y) sin βn ydy + αβn

×
t∫

0

e(αβ2
n +2η/a)s�0(s)ds

⎞
⎠ sin βn x . (A21)

Note that this solution is not continuous at the boundary x = 0. The boundary con-
ditions are satisfied in the limit lim

x→0+ �(x, t) = �0(t). We have to take the Gibbs’

phenomenon into account while using this solution in the numerical computations.
It means that in the optimization problem Eq. 5, we must take x1 > 0.
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